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Interfacial tension and nucleation in mixtures of colloids and long ideal polymer coils
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Mixtures of ideal polymers with hard spheres whose diameters are smaller than the radius of gyration of the
polymer, exhibit extensive immiscibility. The interfacial tension between demixed phases of these mixtures is
estimated, as is the barrier to nucleation. The barrier is found to scale linearly with the radius of the polymer,
causing it to become large for large polymers. Thus for large polymers nucleation is suppressed and phase
separation proceeds via spinodal decomposition, as it does in polymer blends.
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I. INTRODUCTION

In earlier work@1# immiscibility in mixtures of colloidal
hard spheres and long ideal polymer molecules was stud
Long means that the root-mean-square end-to-end separ
of the polymer molecules,RE , is larger than the diameters
of the hard spheres. A mixture of spheres and long polym
was found to demix at comparable number densities of p
mer molecules and spheres, both densities scale withRE as
1/RE

2s, for RE.s. This scaling comes directly from th
leading order term in the second virial coefficient for t
sphere-polymer interaction. The interaction and hence
virial coefficient must be extensive in the number of mon
mers for largeRE and hence must scale asRE

2 for our ideal
polymers. The requirement that it has the dimensions o
volume then imposes the scalingRE

2s ass is the only other
relevant length in the problem: the monomer size is assu
to be much less thans and so is irrelevant. Once the mixtur
has demixed we have two coexisting phases: one with a
density of colloidal particles and a low density of polym
molecules, and one with a high density of polymer molecu
and a low density of colloidal particles. There is an interfa
between these two coexisting phases. Here we determin
scaling of the interfacial tensiong of this interface, and use i
to show that when a mixed sample of polymer and colloid
prepared and quenched into the two-phase region, the
namics of the separation into two phases starts off with s
odal decomposition not nucleation. The fact that the ph
separation starts off with spinodal decomposition ma
mixtures of the long polymers like polymer blends but unli
simple mixtures, e.g., mixtures of oil and water. Thus,
can apply much of what we have learned of spinodal dec
position in systems like polymer blends, to mixtures of c
loidal spheres and much larger polymer molecules.

The colloid-polymer interactions in, and bulk thermod
namics of, mixtures of colloids and large ideal polyme
have both been studied, see Refs.@1–7#. The opposite limit
to that of interest here, i.e., where the polymer molecules
smaller than the colloidal spheres, has been considered
tensively, see Refs.@2,8–10# for work on the bulk phase
behavior and Refs.@11–13# for work on interfaces. The
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following two sections deal with the interfacial tension, a
with nucleation. Throughout, the objective will be to dete
mine the scaling of the behavior with the ratio of the size
the polymer to that of the sphere. Also note that here
polymers are always ideal, mixtures of polymers with stro
excluded volume interactions and spheres, are very diffe
@14–17#.

II. INTERFACIAL TENSION BETWEEN THE DEMIXED
PHASES

The interfacial tension between the demixed phases,
colloid rich, the other polymer rich, can be estimated by j
using dimensional analysis. The tensiong is an energy per
unit area. It is obtained by multiplying the free energy p
unit volume, which iskT/(RE

2s) @1#, by the width of the
interface. This width will be of the order of the polymer siz
RE . Thus,g;kT/REs. Note that the energy scale has to
the thermal energykT as there are no other relevant ener
scales in the problem. The mixture is athermal, there are
attractive interactions or soft repulsions to provide anot
energy scale. The free-energy density is then of orderkT
times the number density, which is of order 1/RE

2s for both
the polymer molecules and the colloidal spheres when t
demix. This is just a simple scaling argument so we confi
it by determining the scaling ofg within a standard square
gradient or Cahn-Hilliard theory for the interface@18–22#.

We apply this theory to the system in the semigrand
semble of Ref.@1# where the characteristic thermodynam
potential is the semigrand potentialv, which is a function of
the number density of colloidal particles,rC , and the activ-
ity z of the polymer molecules. As we are specifying t
activity not the density of the polymer our system is equiv
lent to a single component system whose thermodyna
state depends on the density and on the activity of the p
merz; ln z acts as an inverse temperature in the sense
the larger it is the stronger is the effect of the attractio
Thus we can apply the standard square-gradient expres
for the interfacial tension of a single component syste
which is @12,18,19,21,22#

g5E dxFC1kS drC

dx D 2G , ~1!

where
©2002 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW E 65 062401
C5v@rC~x!#2v (b)2mC@rC~x!2rC
(b)#, ~2!

is the excess grand potential at a point.v (b) andrC
(a) are the

semigrand potential and density in either one of the coex
ing phases. The superscripta5C,P for the colloid-rich and
polymer-rich phases, respectively.mC is the chemical poten
tial of the colloid. The interface is normal to thex axis. The
coefficientk of the gradient term is assumed to be dens
independent. The equilibrium profile is obtained by minim
ing Eq. ~1!. Then standard manipulations enable a simp
expression for the equilibrium interfacial tension to be d
rived @21#:

g52E
rC

(P)

rC
(C)

drC@kC#1/2. ~3!

If we require that the functional Eq.~1! be consistent with
linear response theory@22# we obtain an expression for th
coefficientk of the gradient term,

k5
kT

12E dr r 2c2~r ;rC ,z!, ~4!

where c2(r ;rC ,z) is the direct correlation function of th
fluid of colloidal hard spheres in the presence of polym
For our systems the most basic assumption is to use the
density approximation to the direct correlation function. Th
replacesc with the Mayerf function for the effective sphere
sphere interaction in the presence of the polymer@22#. For
two spheres with centers separated by less thans, the inter-
action energy is infinite and the Mayerf function equals
21. For separations larger thans the only interaction is tha
due to the polymer. This interaction is known@4#, and is long
range and weak thus we linearize the Mayer f function. Ad
ing this altogether we obtain

c~r ;rC ,z!;H 21, r ,s

zRE
2s~s/r !, s,r &RE

0, r @RE ,

~5!

the ideal polymer induces an attraction that decays as 1/r for
separations less than the radius of the polymer and rou
exponentially beyond this. Putting our approximatec into
Eq. ~4!, we obtain an estimate of this coefficient:

k;kTzRE
2s2E

0

RE
drr 3 ~6!

;kTzs2RE
6 . ~7!

We now return to Eq.~3! for the interfacial tension and
determine its scaling withRE . We note that the density dif
ferencerC

(C)2rC
(P);1/RE

2s, k scales as given by Eq.~7!,
C;kT/RE

2s and the polymer activity is of order the poly
mer number densityz;1/RE

2s. Putting this all together we
see that we recover the scalingg;kT/REs obtained earlier
by dimensional analysis. Also, from Eq.~1! we see that the
characteristic length scale for the interface must
06240
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(k/C)1/2rC
(a);RE , as we assumed earlier. Earlier work b

Vrij @11#, and by Brader and Evans@12# on the interfacial
tension between demixed colloid-rich and polymer-ri
phases when the colloid and polymer were of compara
sizes,RE;s, found that, as expected.g;kT/s2;kT/RE

2 .
This is consistent with experimental findings@23#.

The interfacial tensiong will be of orderkT/REs only if
we are not too close to the critical point of the polyme
colloid demixing. In general, we haveg5(kT/REs)s(z/zc
21), wheres is a scaling function andzc is the polymer
activity at the critical point. We have been assuming that
are not very close to the critical point, i.e., thatz/zc21
5O(1), and forthese values of its arguments5O(1) and
we return tog being of orderkT/REs. However, as the
critical point is approached,z/zc21!1, we have that the
scaling functions(x)5s0xm for x!1, wheres0 is a dimen-
sionless constant andm is the ~positive! critical exponent of
the interfacial tension@24#. The interfacial tension tends to
as the critical point of demixing is approached, and near
critical point it varies as a power law. See the review
Widom @24# for an excellent introduction to interfaces ne
critical points. Sufficiently close to the critical point the sca
ing of the interfacial tension will be dominated by fluctu
tions and then the exponentm will take the value for the
Ising model in three dimensions,m51.26@19,24#. However,
for very long polymersRE@s the effective interaction is
long ranged and long-range interactions suppress fluctuat
and make the system mean field like. The mean field valu
the exponentm is 3/2 @24#. Which value of the exponent
Ising or mean-field, is observed is determined by whethe
not the Ginzburg criterion is obeyed or not; see Ref.@19# or
any introduction to critical phenomena for a definition of t
Ginzburg criterion. Note that Eq.~3!, belonging as it does to
a mean-field theory, will yield an interfacial tension th
tends to 0 with an exponentm53/2, its mean-field value.

III. NUCLEATION AND OTHER FLUCTUATIONS

Now consider a single phase mixture of spheres and p
mer quenched into the two-phase coexistence region.
definiteness assume that the single phase is the polymer
one. Then in order for the second, colloid-rich, phase to fo
and coexist with the polymer-rich one, this second ph
must form. The dynamics of the formation of a new pha
fall into two broad categories: nucleation then growth, a
spinodal decomposition. See Refs.@18–20# for an introduc-
tion to the dynamics of first-order phase transitions. For
ample, a mixture of simple liquids such as water and
alcohol phase separate via nucleation of the new water-
or alcohol-rich phase followed by growth of the nucle
whereas polymer blends phase separate via spinodal de
position. Here we show that for large ideal polymers a
spheres, nucleation becomes very difficult, so mixtures
large ideal polymers and much smaller spheres will star
phase separate via spinodal decomposition.

The rate of nucleationNn can be estimated using classic
nucleation theory, see the book of Debenedetti@18# for a
comprehensive discussion, see also Refs.@19,20#. Nn is the
number of nuclei crossing the barrier per unit time per u
1-2
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BRIEF REPORTS PHYSICAL REVIEW E 65 062401
volume. The classical nucleation theory expression for
rateNn is

Nn5Gexp~2DF* /kT!, ~8!

whereG is an attempt frequency per unit volume, genera
slowly varying, andDF* is the free-energy barrier that mu
be crossed in order for a new phase to nucleate. The varia
in the rate is generally dominated by that inDF* so we
focus on this. The free-energy barrier comes from the f
energy needed to form a microscopic droplet of the n
phase, here a colloid-rich phase. This droplet is the nuc
of the new phase. Within classical nucleation theory the f
energy of formation of a microscopic droplet is the sum
two terms, a bulk term and a surface term,

DF5
4

3
pR3Cn14pR2g, ~9!

whereR is the radius of the droplet and

Cn5v~rC
(n)!2v~rC!2mC~rC

(n)2rC! ~10!

is the difference between the grand potential inside
nucleus and the grand potential of the phase in which
nucleus forms,rC is the density of colloid in the phase i
which the nucleus forms, andrC

(n) is the density of colloid
inside the nucleus. So long as we do not approach the s
odal too closely, we can expressCn as a Taylor expansion in
chemical potential, around the chemical potential of the c
loid at coexistencemco . Truncating the Taylor series afte
the linear term, we get

Cn.C8~mC2mco!, ~11!

asCn50 at coexistence, with

C85S ]Cn

]mC
D

mC5mco

, ~12!

the derivative ofCn at coexistence.
The barrier is given by the free energy of the drop

whose free energy is highest, which occurs when the
terms in Eq. ~9! are comparable,R3Cn;R2g. Thus, R
;g/@C8(mC2mco)#, and

DF* ;
g3

@C8~mC2mco!#
2

. ~13!

From Eq.~12!, C8 scales as 1/RE
2s. Using this scaling to-

gether with that ofg, we find that at the top of the barrier th
size of the nucleus is of orderRE , for mC2mco not too much
06240
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less thankT. Using these same scalings in Eq.~13!, we ob-
tain the principle result of this section, the scaling of t
nucleation barrierDF* ,

DF*

kT
;S mco

mC2mco
D 2RE

s
, ~14!

the barrier scales asRE /s and so increases as the size of t
polymer molecules relative to that of the colloidal sphe
increases. The factor in parentheses is a dimensionless
sure of the supersaturation: how far we are into the tw
phase region.

For sufficiently largeRE of the polymers the nucleation
barrier will become so large that nucleation cannot occ
The mixture will be metastable up to very close to the sp
odal @20,25–27#. Thus, the mixture will only start to demix
when quenched beyond the spinodal, where the phase s
ration will start with spinodal decomposition. This is pr
cisely analogous to polymer blends and systems of parti
in which the particle-particle attractions are long ranged.
these systems the nucleation barrier scales asN1/2 and asr 3,
whereN is the length of the polymer andr is the range of the
attraction@27#. The phase transition dynamics of systems
polymers and of particles with long-range attractions, w
studied extensively in the early 1980s by Binder and Kle
and their co-workers@25–27#. Many of the conclusions of
that work also apply to the demixing of mixtures of ha
spheres and much larger ideal polymers.

Finally, we note that our finding that nucleation is su
pressed is equivalent to saying that our mixture satisfies
Ginzburg criterion for the irrelevance of fluctuations@19#.
Essentially, nucleationis a fluctuation so when fluctuation
are weak nucleation is suppressed and vice versa, again
was found for polymer blends/particles with long-range
tractions@28,27#. For our mixtures, the Ginzburg criterion i
essentially that the root-mean-square~rms! fluctuations in the
number of colloidal spheres or of polymer molecules, in
volume RE

3 , are much less than the mean number in t
volume. The volumeRE

3 is the volume over which a pair o
spheres or polymer interact~the sphere-sphere interaction
mediated by the polymer molecules, and the polym
polymer interaction is mediated by the spheres!. The rms
fluctuations scale as the square root of the number of sph
in a volumeRE

3 , which is ;(RE /s)1/2, whereas the mean
number scales asRE /s. Thus for large values of the ratio o
the sizes,RE /s, the rms fluctuations in the number o
spheres~or polymer molecules! inside the interaction volume
is a small fraction of the mean number. Fluctuations ab
the mean are small and so mean-field theory applies
nucleation, which is a fluctuation, has a very high fre
energy cost.
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