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Interfacial tension and nucleation in mixtures of colloids and long ideal polymer coils
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Mixtures of ideal polymers with hard spheres whose diameters are smaller than the radius of gyration of the
polymer, exhibit extensive immiscibility. The interfacial tension between demixed phases of these mixtures is
estimated, as is the barrier to nucleation. The barrier is found to scale linearly with the radius of the polymer,
causing it to become large for large polymers. Thus for large polymers nucleation is suppressed and phase
separation proceeds via spinodal decomposition, as it does in polymer blends.
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[. INTRODUCTION following two sections deal with the interfacial tension, and
with nucleation. Throughout, the objective will be to deter-
In earlier work[1] immiscibility in mixtures of colloidal ~mine the scaling of the behavior with the ratio of the size of
hard spheres and long ideal polymer molecules was studie#ie polymer to that of the sphere. Also note that here the
Long means that the root-mean-square end-to-end separatiBflymers are always ideal, mixtures of polymers with strong
of the polymer molecules}g, is larger than the diameter excluded volume interactions and spheres, are very different
of the hard spheres. A mixture of spheres and long ponmerE—A'—lﬂ-
was found to demix at comparable number densities of poly-
mer molecules and spheres, both densities scale Ryiths Il INTERFACIAL TENSION BETWEEN THE DEMIXED
1/RZo, for Re>o. This scaling comes directly from the PHASES

leading order term in the second virial coefficient for the  Tne interfacial tension between the demixed phases, one
sphere-polymer interaction. The interaction and hence thgo|loid rich, the other polymer rich, can be estimated by just
virial coefficient must be extensive in the number of mono-ysing dimensional analysis. The tensigris an energy per
mers for largeRe and hence must scale & for our ideal  unit area. It is obtained by multiplying the free energy per
polymers. The requirement that it has the dimensions of anit volume, which iSkT/(Ré(T) [1], by the width of the
volume then imposes the scaliRfo aso is the only other interface. This width will be of the order of the polymer size
relevant length in the problem: the monomer size is assumeBg . Thus,y~kT/Rgo. Note that the energy scale has to be
to be much less tham and so is irrelevant. Once the mixture the thermal energikT as there are no other relevant energy
has demixed we have two coexisting phases: one with a higgcales in the problem. The mixture is athermal, there are no
density of colloidal particles and a low density of polymer attractive interactions or soft repulsions to provide another
molecules, and one with a high density of polymer moleculeg€nergy scale. The free-energy density is then of oider
and a low density of colloidal particles. There is an interfacetimes the number density, which is of ordeR$s for both
between these two coexisting phases. Here we determine tilee polymer molecules and the colloidal spheres when they
scaling of the interfacial tensiop of this interface, and use it demix. This is just a simple scaling argument so we confirm
to show that when a mixed sample of polymer and colloid isit by determining the scaling of within a standard square-
prepared and quenched into the two-phase region, the dgradient or Cahn-Hilliard theory for the interfaf&8—-22.
namics of the separation into two phases starts off with spin- We apply this theory to the system in the semigrand en-
odal decomposition not nucleation. The fact that the phassemble of Ref[1] where the characteristic thermodynamic
separation starts off with spinodal decomposition makegotential is the semigrand potential which is a function of
mixtures of the long polymers like polymer blends but unlike the number density of colloidal particlesg, and the activ-
simple mixtures, e.g., mixtures of oil and water. Thus, weity z of the polymer molecules. As we are specifying the
can apply much of what we have learned of spinodal decomactivity not the density of the polymer our system is equiva-
position in systems like polymer blends, to mixtures of col-lent to a single component system whose thermodynamic
loidal spheres and much larger polymer molecules. state depends on the density and on the activity of the poly-
The colloid-polymer interactions in, and bulk thermody- merz; Inzacts as an inverse temperature in the sense that
namics of, mixtures of colloids and large ideal polymersthe larger it is the stronger is the effect of the attractions.
have both been studied, see Réfs-7]. The opposite limit  Thus we can apply the standard square-gradient expression
to that of interest here, i.e., where the polymer molecules aréor the interfacial tension of a single component system,
smaller than the colloidal spheres, has been considered ewhich is[12,18,19,21,2p
tensively, see Refd.2,8—1Q for work on the bulk phase

behavior and Refs[11-13 for work on interfaces. The
y= | dXx ¥+«

dpc|?
dx) ’ @
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T =w[pc(x)]— 0®— ulpe(x)— p®)1, 2)  («IP)¥2pl~Re, as we assumed earlier. Earlier work by
Vrij [11], and by Brader and Evarj4d2] on the interfacial

is the excess grand potential at a point? andpg*) are the tension between demixed colloid-rich and polymer-rich
semigrand potential and density in either one of the coexistphases when the colloid and polymer were of comparable
ing phases. The superscript= C,P for the colloid-rich and  sizes,Rg~ o, found that, as expected.~ kT/02~kT/R§.
polymer-rich phases, respectivelyc is the chemical poten- This is consistent with experimental finding3].
tial of the colloid. The interface is normal to tlxeaxis. The The interfacial tensiory will be of orderkT/Rgo only if
coefficientx of the gradient term is assumed to be densitywe are not too close to the critical point of the polymer-
independent. The equilibrium profile is obtained by minimiz- colloid demixing. In general, we have= (kT/Rgo)s(z/z.
ing Eq. (1). Then standard manipulations enable a simpler—1), wheres is a scaling function and, is the polymer
expression for the equilibrium interfacial tension to be de-activity at the critical point. We have been assuming that we

rived [21]: are not very close to the critical point, i.e., thaz.—1
© =0(1), and forthese values of its argumestO(1) and
y=2fpc dpo] KW ]2 @ Wwe return toy being of orderkT/Reo. However, as the
o) critical point is approachedz/z.—1<1, we have that the

scaling functions(x) =syx* for x<1, wheres, is a dimen-

If we require that the functional E@l) be consistent with  sionless constant and is the (positive critical exponent of
linear response theof22] we obtain an expression for the the interfacial tensiof24]. The interfacial tension tends to 0
coefficientx of the gradient term, as the critical point of demixing is approached, and near the

critical point it varies as a power law. See the review of
_ kT o Widom [24] for an excellent introduction to interfaces near
n Ef drrecy(r;pc.2), ) critical points. Sufficiently close to the critical point the scal-

ing of the interfacial tension will be dominated by fluctua-

where c,(r;pc,z) is the direct correlation function of the tions and then the exponept will take the value for the
fluid of colloidal hard spheres in the presence of polymerlsing model in three dimensiong,=1.26[19,24. However,
For our systems the most basic assumption is to use the lofer very long polymersRg> o the effective interaction is
density approximation to the direct correlation function. Thislong ranged and long-range interactions suppress fluctuations
replaces with the Mayerf function for the effective sphere- and make the system mean field like. The mean field value of
sphere interaction in the presence of the polyf@3]. For  the exponentu is 3/2 [24]. Which value of the exponent,
two spheres with centers separated by less thathe inter-  Ising or mean-field, is observed is determined by whether or
action energy is infinite and the Mayérfunction equals  not the Ginzburg criterion is obeyed or not; see R&€] or
—1. For separations larger thanthe only interaction is that any introduction to critical phenomena for a definition of the
due to the polymer. This interaction is knoydl, and is long  Ginzburg criterion. Note that E¢3), belonging as it does to
range and weak thus we linearize the Mayer f function. Add-a mean-field theory, will yield an interfacial tension that
ing this altogether we obtain tends to O with an exponent=3/2, its mean-field value.

K

-1, r<o
c(r;pc,z)~ zZREa(olr), o<r=Rg (5)

IIl. NUCLEATION AND OTHER FLUCTUATIONS

Now consider a single phase mixture of spheres and poly-
0, r>Rg, mer quenched into the two-phase coexistence region. For

. | : ion th definiteness assume that the single phase is the polymer-rich
the ideal polymer induces an attraction that decaysmfol/  ,ne Then in order for the second, colloid-rich, phase to form

separations less than the radius of the polymer and roughlgnd coexist with the polymer-rich one, this second phase
exponentially beyond this. Putting our approximaténto

- : . - must form. The dynamics of the formation of a new phase
Eg. (4), we obtain an estimate of this coefficient: fall into two broad categories: nucleation then growth, and
Re spinodal decomposition. See Reff$8—2(Q for an introduc-
k~kTz @UZJ drrd (6) tion to the dynamics of first-order phase transitions. For ex-
0 ample, a mixture of simple liquids such as water and an
alcohol phase separate via nucleation of the new water-rich
~kTzo?RE. (7)  or alcohol-rich phase followed by growth of the nuclei,
) . ) whereas polymer blends phase separate via spinodal decom-
We now return to Eq(3) for the interfacial tension and position. Here we show that for large ideal polymers and
determine its scaling witiRg . We note that the density dif- spheres, nucleation becomes very difficult, so mixtures of
ferencepls) — p'~1/REs,  « scales as given by EG7),  |arge ideal polymers and much smaller spheres will start to
\If~kT/REU and the polymer activity is of order the poly- phase separate via spinodal decomposition.
mer number densitg~ 1/R20-. Putting this all together we The rate of nucleatioll,, can be estimated using classical
see that we recover the scaling-kT/Rgo obtained earlier nucleation theory, see the book of Debenedgt8] for a
by dimensional analysis. Also, from E(l) we see that the comprehensive discussion, see also Rilf8,20. N, is the
characteristic length scale for the interface must benumber of nuclei crossing the barrier per unit time per unit
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volume. The classical nucleation theory expression for théess tharkT. Using these same scalings in Ef3), we ob-
rateN,, is tain the principle result of this section, the scaling of the
nucleation barried F*,

AF* ( Mco ) 2RE
KT MCc™ Mco) O

N,=Texp(—AF*/KT), (8)

wherel” is an attempt frequency per unit volume, generally , (14

slowly varying, andAF* is the free-energy barrier that must

be crossed in order for a new phase to nucleate. The variatiQie parrier scales & /o and so increases as the size of the
in the rate is generally dominated by that &F* so we  holymer molecules relative to that of the colloidal spheres
focus on this. The free-energy barrier comes from the freg,creases. The factor in parentheses is a dimensionless mea-

energy needed to form a microscopic droplet of the nevg,re of the supersaturation: how far we are into the two-
phase, here a colloid-rich phase. This droplet is the nUdeUﬁhase region.

of the new phase. Within classical nucleation theory the free g4, sufficiently largeRg of the polymers the nucleation
energy of formation of a microscopic droplet is the sum ofparier will become so large that nucleation cannot occur.

two terms, a bulk term and a surface term, The mixture will be metastable up to very close to the spin-
4 odal[20,25-27. Thus, the mixture will only start to demix
AF= §7TR3qfn+4TrR2% 9) when quenched beyond the spinodal, where the phase sepa-

ration will start with spinodal decomposition. This is pre-
cisely analogous to polymer blends and systems of particles
in which the particle-particle attractions are long ranged. In
(100  these systems the nucleation barrier scaled’¥sand asr®,
whereN is the length of the polymer ands the range of the
is the difference between the grand potential inside thettraction[27]. The phase transition dynamics of systems of
nucleus and the grand potential of the phase in which th@olymers and of particles with long-range attractions, were
nucleus formspc is the density of colloid in the phase in studied extensively in the early 1980s by Binder and Klein
which the nucleus forms, and!” is the density of colloid and their co-worker§25-27. Many of the conclusions of
inside the nucleus. So long as we do not approach the spifihat work also apply to the demixing of mixtures of hard
odal too closely, we can expreds, as a Taylor expansion in spheres and much larger ideal polymers.
chemical potential, around the chemical potential of the col- Finally, we note that our finding that nucleation is sup-
loid at coexistenceu.,. Truncating the Taylor series after pressed is equivalent to saying that our mixture satisfies the

whereR is the radius of the droplet and

V.= w(p)—0(pe)— nc(p® - pe)

the linear term, we get Ginzburg criterion for the irrelevance of fluctuatiofis9].
Essentially, nucleatiois a fluctuation so when fluctuations
Vo=V (uc— Meo) (12) are weak nucleation is suppressed and vice versa, again this
] . was found for polymer blends/particles with long-range at-
as¥,=0 at coexistence, with tractions[28,27]. For our mixtures, the Ginzburg criterion is
P essentially that the root-mean-squéms) fluctuations in the
r:( “) , (12) number of colloidal spheres or of polymer molecules, in a
drc =t volume R, are much less than the mean number in that
volume. The volumeR? is the volume over which a pair of
the derivative of¥#, at coexistence. spheres or polymer intera@the sphere-sphere interaction is

The barrier is given by the free energy of the dropletmediated by the polymer molecules, and the polymer-
whose free energy is highest, Wh'%h oceurs when the tWyolymer interaction is mediated by the spherékhe rms
terms in Eq.(9) are comparableR*V,~R%y. Thus, R fluctuations scale as the square root of the number of spheres

~ VIV (e teo) ], and in a volumeRE, which is ~(Rg/0)Y?, whereas the mean
3 number scales ag/o. Thus for large values of the ratio of
* Y the sizes,Rg/o, the rms fluctuations in the number of
AF : (13) ctuations in the
[V (e— peo) 2 spheregor polymer moleculesinside the interaction volume

is a small fraction of the mean number. Fluctuations about
From Eq.(12), V' scales as Réo. Using this scaling to- the mean are small and so mean-field theory applies and
gether with that ofy, we find that at the top of the barrier the nucleation, which is a fluctuation, has a very high free-
size of the nucleus is of ord&g, for pc— ueo NOt too much  energy cost.
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